13 research outputs found

    Marquette\u27s Medical Missionaries

    Get PDF

    Patterns of beverages consumed and risk of incident kidney disease

    Get PDF
    © 2019 by the American Society of Nephrology. Background and objectives Selected beverages, such as sugar-sweetened beverages, have been reported to influence kidney disease risk, although previous studies have been inconsistent. Further research is necessary to comprehensively evaluate all types of beverages in association with CKD risk to better inform dietary guidelines. Design, setting, participants, & measurements We conducted a prospective analysis in the Jackson Heart Study, a cohort of black men and women in Jackson, Mississippi. Beverage intake was assessed using a food frequency questionnaire administered at baseline (2000–2004). Incident CKD was defined as onset of eGFR\u3c60 ml/min per 1.73 m 2 and ≥30% eGFR decline at follow-up (2009–13) relative to baseline among those with baseline eGFR ≥60 ml/min per 1.73 m 2 . Logistic regression was used to estimate the association between the consumption of each individual beverage, beverage patterns, and incident CKD. Beverage patterns were empirically derived using principal components analysis, in which components were created on the basis of the linear combinations of beverages consumed. Results Among 3003 participants, 185 (6%) developed incident CKD over a median follow-up of 8 years. At baseline, mean age was 54 (SD 12) years, 64% were women, and mean eGFR was 98 (SD 18) ml/min per 1.73 m 2 . After adjusting for total energy intake, age, sex, education, body mass index, smoking, physical activity, hypertension, diabetes, HDL cholesterol, LDL cholesterol, history of cardiovascular disease, and baseline eGFR, a principal components analysis–derived beverage pattern consisting of higher consumption of soda, sweetened fruit drinks, and water was associated with significantly greater odds of incident CKD (odds ratio tertile 3 versus 1 =1.61; 95% confidence interval, 1.07 to 2.41). Conclusions Higher consumption of sugar-sweetened beverages was associated with an elevated risk of subsequent CKD in this community-based cohort of black Americans

    Development of Risk Prediction Equations for Incident Chronic Kidney Disease

    Get PDF
    IMPORTANCE ‐ Early identification of individuals at elevated risk of developing chronic kidney disease  could improve clinical care through enhanced surveillance and better management of underlying health  conditions.  OBJECTIVE – To develop assessment tools to identify individuals at increased risk of chronic kidney  disease, defined by reduced estimated glomerular filtration rate (eGFR).  DESIGN, SETTING, AND PARTICIPANTS – Individual level data analysis of 34 multinational cohorts from  the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected  from April, 1970 through January, 2017. A two‐stage analysis was performed, with each study first  analyzed individually and summarized overall using a weighted average. Since clinical variables were  often differentially available by diabetes status, models were developed separately within participants  with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external  cohorts (N=2,253,540). EXPOSURE Demographic and clinical factors.  MAIN OUTCOMES AND MEASURES – Incident eGFR <60 ml/min/1.73 m2.  RESULTS – In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were  660,856 incident cases of reduced eGFR during a mean follow‐up of 4.2 years. In 781,627 participants  with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean follow‐up of 3.9 years. Equations for the 5‐year risk of reduced eGFR included age, sex, ethnicity, eGFR, history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants  with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction  between the two. The risk equations had a median C statistic for the 5‐year predicted probability of  0.845 (25th – 75th percentile, 0.789‐0.890) in the cohorts without diabetes and 0.801 (25th – 75th percentile, 0.750‐0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%) study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was  similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18 (89%) had a slope of observed to predicted risk between 0.80 and 1.25. CONCLUSIONS AND RELEVANCE – Equations for predicting risk of incident chronic kidney disease developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and  variable calibration in diverse populations

    Development of Risk Prediction Equations for Incident Chronic Kidney Disease

    No full text
    Importance: Early identification of individuals at elevated risk of developing chronic kidney disease (CKD) could improve clinical care through enhanced surveillance and better management of underlying health conditions. Objective: To develop assessment tools to identify individuals at increased risk of CKD, defined by reduced estimated glomerular filtration rate (eGFR). Design, Setting, and Participants: Individual-level data analysis of 34 multinational cohorts from the CKD Prognosis Consortium including 5222711 individuals from 28 countries. Data were collected from April 1970 through January 2017. A 2-stage analysis was performed, with each study first analyzed individually and summarized overall using a weighted average. Because clinical variables were often differentially available by diabetes status, models were developed separately for participants with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external cohorts (n = 2253540). Exposures: Demographic and clinical factors. Main Outcomes and Measures: Incident eGFR of less than 60 mL/min/1.73 m2. Results: Among 4441084 participants without diabetes (mean age, 54 years, 38% women), 660856 incident cases (14.9%) of reduced eGFR occurred during a mean follow-up of 4.2 years. Of 781627 participants with diabetes (mean age, 62 years, 13% women), 313646 incident cases (40%) occurred during a mean follow-up of 3.9 years. Equations for the 5-year risk of reduced eGFR included age, sex, race/ethnicity, eGFR, history of cardiovascular disease, ever smoker, hypertension, body mass index, and albuminuria concentration. For participants with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction between the 2. The risk equations had a median C statistic for the 5-year predicted probability of 0.845 (interquartile range [IQR], 0.789-0.890) in the cohorts without diabetes and 0.801 (IQR, 0.750-0.819) in the cohorts with diabetes. Calibration analysis showed that 9 of 13 study populations (69%) had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 of 18 (89%) had a slope of observed to predicted risk between 0.80 and 1.25. Conclusions and Relevance: Equations for predicting risk of incident chronic kidney disease developed from more than 5 million individuals from 34 multinational cohorts demonstrated high discrimination and variable calibration in diverse populations. Further study is needed to determine whether use of these equations to identify individuals at risk of developing chronic kidney disease will improve clinical care and patient outcomes.

    Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium

    No full text
    OBJECTIVE:To evaluate the associations between adiposity measures (body mass index, waist circumference, and waist-to-height ratio) with decline in glomerular filtration rate (GFR) and with all cause mortality. DESIGN:Individual participant data meta-analysis. SETTING:Cohorts from 40 countries with data collected between 1970 and 2017. PARTICIPANTS:Adults in 39 general population cohorts (n=5 459 014), of which 21 (n=594 496) had data on waist circumference; six cohorts with high cardiovascular risk (n=84 417); and 18 cohorts with chronic kidney disease (n=91 607). MAIN OUTCOME MEASURES:GFR decline (estimated GFR decline ≥40%, initiation of kidney replacement therapy or estimated GFR <10 mL/min/1.73 m2) and all cause mortality. RESULTS:Over a mean follow-up of eight years, 246 607 (5.6%) individuals in the general population cohorts had GFR decline (18 118 (0.4%) end stage kidney disease events) and 782 329 (14.7%) died. Adjusting for age, sex, race, and current smoking, the hazard ratios for GFR decline comparing body mass indices 30, 35, and 40 with body mass index 25 were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 (1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively. Results were similar in all subgroups of estimated GFR. Associations weakened after adjustment for additional comorbidities, with respective hazard ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67). The association between body mass index and death was J shaped, with the lowest risk at body mass index of 25. In the cohorts with high cardiovascular risk and chronic kidney disease (mean follow-up of six and four years, respectively), risk associations between higher body mass index and GFR decline were weaker than in the general population, and the association between body mass index and death was also J shaped, with the lowest risk between body mass index 25 and 30. In all cohort types, associations between higher waist circumference and higher waist-to-height ratio with GFR decline were similar to that of body mass index; however, increased risk of death was not associated with lower waist circumference or waist-to-height ratio, as was seen with body mass index. CONCLUSIONS:Elevated body mass index, waist circumference, and waist-to-height ratio are independent risk factors for GFR decline and death in individuals who have normal or reduced levels of estimated GFR

    South Africa

    No full text

    Walter Deane correspondence.

    No full text
    Sender Bailey, William W., 1888-189

    Walter Deane correspondence.

    No full text
    Senders N-P, 1845-192
    corecore